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One finding from a larger investigation of teacher-child interactions that challenged young children to 
probe their mathematical understandings is reported in this paper. It is the interlinked nature of the 
conversational exchanges between teacher and child in mathematics lessons in the early years of 
primary school. These conversations serve to support, extend and challenge children’s thinking. One 
detailed example of such mathematical conversations, the story of Jordan, is presented to illustrate the 
phenomenon. 

Children construct mathematical ideas in the course of their interactions with their 
teacher and classmates (McNeal, 2001; Mercer, 1996). Interactions in whole class settings 
have been studied (Kyriacou & Issitt, 2008; Mercer, 1996; Mercer & Littleton, 2007); 
however, little is known about the interactions between teacher and child in one-to-one 
conversations during the mathematics lessons of young children.  

The behaviours of highly effective teachers as they conversed with young children in 
mathematics lessons were investigated in a detailed study (Cheeseman, 2009). Of 
particular interest what was described by Alexander (2005) as dialogic teaching, the sort of 
exchanges that Kyriacou and Issitt (2008) found only to a minor extent in their review of 
research in the United Kingdom. They observed that some teachers made use of extended 
dialogue, asked children to explain or justify their method, and asked follow-up questions. 
They also found that teachers engaged in one-to-one private dialogue when children were 
working individually on set tasks. However, they noted that “surprisingly little research is 
reported on the dialogue during such interactions” (p. 8). This is the gap in the literature 
that my larger study addressed. The practice of four teachers was closely examined, 
analysed, and described. One of the findings of the study is reported in this paper – the 
interlinked strings of conversations that teachers conducted as they challenged children to 
probe their mathematical thinking. 

Brown and McIntyre (1993) attempted to describe and theorise the “professional craft 
knowledge” of teachers. They said: “While we recognise that there are those with mastery 
of some aspects of teaching, we have no coherent account of what they are masters of or 
how they achieve what they achieve” (p. 13). 

Ainley and Luntley (2005) argued that expert teachers possess knowledge that is 
“contextualised and attention-dependent” (p.74). A pilot study by these researchers 
examined what teachers attended to in the “relative invisibility of minute-by-minute 
practices in the classroom” (p.74). At the time of writing, their work was still in its 
developmental stages. However, exactly what “master teachers” or “expert teachers” do as 
they interact within the classroom continues to be of interest to researchers. 

Background 
Highly effective teachers were identified and studied in the Early Numeracy Research 
Project (Clarke, et al., 2002). Common characteristics of the teachers’ practices were 
described. One category of behaviours that emerged from the data concerned the creation 
of classroom learning communities. As a member of the original research team, I was of 
the view that the challenging mathematical conversations between teachers and children 
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were a key to the learning gains the teachers could help young children achieve. To 
investigate in greater depth the nature of classroom conversations between teachers and 
children, the practices of the teachers were examined with a focus on the conversations 
(Cheeseman, 2009). 

Much has been written about mathematical discourse, talk, questioning, and listening 
in the mathematics classroom. However, the ways in which teachers actually go about 
constructing and developing exchanges is not so well documented. There has also been a 
call for more of what Mercer (2000) termed dialogic teaching. This style of teaching is 
compatible with a social constructivist theory of learning that holds that learning occurs or 
is constructed in a social situation where meaning is made between the participants (Wood, 
2001). 

Methodology 
Complementary accounts methodology was described and used by Clarke (2001). Data 
collection procedures that constructed “integrated data sets” combining videotape and 
interview data were used, the reflective voice of participant teachers and students in the 
data set were included, and a research team to carry out a multi-faceted analysis of 
classroom data was utilised. While the methodology adopted for this study differed from 
that of Clarke (2001), similar fundamental techniques were used including: videotaping the 
whole mathematics lesson, audio taping participants’ reconstructions of classroom events, 
and analysing the multiple data sets. The points of difference in the present study were: 

• the focus of the study – the teacher’s interactions involving negotiations of 
mathematical meaning with children, 

• the age of the student participants - children were in the first three years of 
primary schooling, and 

• the use of video-stimulated recall to prompt children 5 to 7 years of age to 
reflect on their mathematical thinking. 

These adaptations to the original complementary accounts methodology proved useful 
in capturing the complexity of early primary mathematics classroom interactions. Each 
teacher’s classroom was observed and data were collected over several “ordinary” 
mathematics lessons on consecutive days. 

The data were treated in cycles of analysis in an iterative process. Researchers in 
mathematics education have reported similar approaches to the analysis of their data. 
Groves and Doig (1998) reported viewing videotapes many times, interspersing 
transcription and summarising with viewing. Cobb (1995) described analysis of data that 
“involved a continual movement between particular episodes and potentially general 
conjectures” (p. 35). Each of these descriptions has some resonances with the process used 
in this study. The iterative process used here involved many viewings of the data, 
alternating between a “close up” focus and a “standing back” to gain some perspective on 
the data, and raising and testing conjectures about the findings. Lampert (1990) 
characterised the “zig-zag” path of mathematical activity from conjectures to proofs by 
“revising conclusions and revising assumptions in the process of coming to know” (p.30). 

The starting point was the video record of one lesson, and the data for each teacher 
were analysed prior to beginning the analysis of data from a different teacher. In this way a 
picture was built of the phenomena under examination in isolated sessions and it evolved 
to an analysis of a collection of related sessions (Lesh & Lehrer, 2000). A descriptive 
summary of the practices of each teacher was written, examples of the phenomena as 
evidenced in that classroom were detailed, and features of each specific interaction were 
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listed. In this way events that had initially received equal attention gradually evolved so 
that some received special attention as exemplary or illuminating. Following an analysis 
and reporting of each lesson’s data for one teacher, patterns and similarities were sought in 
the behaviours observed. After the data from all four teachers’ were analysed, a cross-case 
analysis was conducted. 

Cycles of analysis were used to telescope or look more intensely and in detail at the 
data. They began by giving attention to entire videotaped lessons and ended with a deeper 
and more time consuming focus on a relatively small number of specially selected events. 
Individual portrayals of teachers’ practices with regard to the phenomena under 
investigation were developed from observations, videotapes, and interviews. As Stake 
(1994) noted, “it may be the case’s own story, but it is the researcher’s dressing of the 
story [with] the aim of finding the story that best represents the case” (p. 240). 

Interlinked strings of mathematical conversations 
A detailed analysis of the challenging mathematical conversations undertaken by four 
teachers showed that each teacher created interlinked conversations with children during 
their lessons. Each teacher had a different style and pattern of interaction, and yet each of 
them developed strings of mathematical conversations with a handful of children each day. 
The teacher whose practice is used as an example in this paper, focused principally on one 
or two children, having four or five different exchanges with each of them. During the 
same lesson she also engaged another four children in conversations that consisted of two 
or three exchanges. These conversations were in addition to one-off exchanges that 
happened with many other children during the lesson. 

Challenging Mathematical Thinking: The Story of Jordan 
The story of Jordan comes from a mathematics lesson “Sue” taught with children in their 
first year of school. The problem of the day was: “A teacher asked the class to go up on the 
stage for assembly. She asked half of the class to sit and half of the class to stand. How 
might that look?” The 5-6 year-old children were asked to draw something on a large piece 
of paper to show their solution to the problem. 

Jordan was selected during the initial setting up of the lesson to show half of a piece of 
string. As he adjusted the ends of the string to make them match, Sue asked him to explain 
to the children why he was doing that. He replied that he wanted to get it “just the same”. 

Later Sue called a group of four children to work with her on the floor. She told them 
that they were going to use materials to work the problem out. Sue had collected a 
container of two-coloured counters which she tipped onto the floor. Patrick and Jordan 
decided that they wanted something different so they were sent off to get the materials that 
they were going to use. Soon they returned with a container of plastic dinosaurs. Patrick 
demonstrated to Sue how the ‘sitting down’ group would be tipped over onto its side while 
the ‘standing up’ group would be upright dinosaurs. Sue then restated the problem and left 
them to get on with finding a solution. 

Jordan was slow to get organised and Sue was quite insistent that he show her what he 
planned to do. Once he became engrossed with the task she turned her attention to others in 
the group. From time to time she asked for an explanation or justification of Jordan’s 
thinking about what he was doing. He had placed two rows of dinosaurs on the paper, one 
row consisted of nine figures standing up and the other was of nine lying down. When he 
was asked what he had, he replied that he had half standing and half sitting. Sue pressed 
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him for how he knew that. He said that they were “equal”. Sue said, “What’s equal?” and 
got another dinosaur and put it at the end of the standing row. Jordan said that wouldn’t be 
half because one was longer. It was clear what Sue was probing for. Was Jordan looking at 
the length of the two rows or the number of objects in each row? Could Jordan conserve 
number? Did Sue know something about Jordan’s number understandings that made her 
keep questioning him? She still pressed for an explanation of why it was half. Then she 
was immediately satisfied when he explained that the numbers have to be the same. 

Sue then swung Jordan’s focus to the number of objects in the whole “class”. To find 
how many were in the class altogether Jordan counted the standing row in twos to 8 and on 
from 9 to eighteen. He needed support to count beyond 12 in twos. He commented 
something about “it’s counting by nines”. He added that he could do it if he could count by 
nines. Sue asked him whether he could count on a calculator then sent him to get one. As 
he was walking back to his workspace on the floor he had already keyed in the strokes to 
have his calculator count by nines. (Sue later wrote the keystrokes he told her on his paper 
as 9 + = =). He sat on the floor calling out the sequence of numbers he was generating on 
the calculator display 9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99, 108. He was rocking back 
and forth and smiling to himself. Sue was smiling too then she said “so if you could count 
by nines you could do it, or you could get the calculator to count by nines, couldn’t you?” 
Next she challenged Jordan to write down what he had done. Having worked with several 
other children, Sue came back to Jordan. He had put out four rows of dinosaurs by that 
time and knew that there were 36 of them on the floor. Sue asked him to run through what 
he had done and to say how many groups of nine he had begun with. She emphasised the 
groups of nine by recording what he told her. She then encouraged Jordan to think about 
his extension of the original problem, where he had two rows of people sitting and two 
rows standing. Sue recorded, in symbols that made sense to him, the solution that Jordan 
had found using materials (Figure 1). 

There was a little comment by Jordan when Sue was drawing the stick figures sitting 
and standing. It had the familiarity of a child sitting beside his mother as she drew him a 
picture, Jordan sat close and smiled at Sue: 
Jordan:  You’re really good at that. 
Sue: I’m not really; I don’t quite know what I’ m doing with this leg. What will I 

do with that one? Anyway he’s sitting isn’t he? 
Jordan:  Mm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The front of Jordan’s sheet of paper. 

Jordan’s recording of the count by nines sequence he 
generated on the calculator. The circled figure was his 
solution to the problem. 

Sue’s recording of the 
original problem. 

Sue’s symbolic 
representation 
of 9 standing 
and 9 sitting. 

The key strokes 
Jordon used on the 
calculator to make 
the count by 9s 
sequence. 

Jordan’s 
solution to the 
second part of 
the problem: 
work out how 
many children 
are in the class 
altogether. 

Sue’s recording of the 
extended problem posed 
by Jordan 
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Jordan proved to Sue that there were 18 in the whole class. He used the calculator to 
skip count by nines. Sue then issued another challenge: “If you would like to, have a go at 
counting by nines and see if you can see a pattern”. 

After the children had worked on solutions to the problem for about 40 minutes the 
class was given notice to finish and to pack up so that they could be ready to share their 
ideas. Three children, including Jordan, were asked to be ready to tell what they had done. 
The first child to share was Nicholas. By asking leading questions, Sue led him through a 
succinct description of his solution – six standing and six sitting was 12 altogether. She 
asked him to justify his solution in terms of the problem then focused on the mental 
computation strategy that he used to find the total. She described how he was originally 
going to “count all” of the people he had drawn but she had challenged him to do 
something else. Nicholas then said that he remembered when they were using dice and he 
knew that 6 and 6 was 12. Sue connected that to a previous time when they had found 
double letters and introduced “doubles” in numbers. She asked Jordan what you get when 
you double 9. He responded immediately with 18. 

Brianna was asked to talk about her work especially to say how she changed her 
original solution and why. She originally had 4 children standing and 5 sitting. In asking 
Brianna to explain her thinking Sue seemed to be emphasising the need for two halves to 
be equivalent in number. She was also praising the correction of flawed thinking. 

Then Sue asked Jordan to report to the class. She set up the report by describing the 
fact that Jordan had dinosaurs and asked Jordan to describe what he did to start with. He 
talked about how he had nine sitting and nine standing and as he was doing so he read his 
paper and picked up his calculator and pressed the keystrokes to generate a count by nines 
pattern. Sue stopped him there to state the solution. 

Then using the thinking that Jordan did as an extension to the problem of the day, Sue 
capitalised on the opportunity to have the class look at the sequence of numbers generated 
by counting by nines and to identify and predict some patterns. Children were then 
gathered around Sue to look at what Jordan found and to check what he had done. First 
Jordan generated the sequence of numbers he had produced by getting a calculator to skip 
count by nines. Then Sue challenged the children to explain why he had written the pattern 
as: 9, 8, 7, 6, 5, 4, 3, 2, 1 (Figure 2). Lexie described Jordan’s figures as “the numbers on 
the end”.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The back of Jordan’s sheet of paper. 

Jordan’s self correction – 
several attempts at a 9. 
The sequence 18, 27, 36,45, 
with the tens crossed out. 
The pattern Jordan noticed in 
the ones place. 



 118 

 

Figure 3. Jordan’s work and Sue’s use of the pattern he had found. 

Sue then orchestrated a scenario where the children were able to predict the next 
number in the pattern and she even challenged them to search for a pattern in the tens 
column as well (Figure 3). 

The children had been concentrating on mathematics for a long time and there were a 
few minutes till recess so Sue said that they could have a few quiet minutes to do what they 
wanted, to eat some “brain food” (fruit and vegetable snacks that they have close at hand) 
or to play with a calculator to do what Jordan did. It was very interesting to see that at least 
half of the class got a calculator to investigate “Jordan’s numbers”. 

A timeline of Sue’s interactions with Jordan in Lesson 2 can be seen in Figure 4 It 
reveals that Sue interacted with Jordan on ten separate occasions and on two of these 
occasions she spent an extended period of time engaged in conversation with him. The 
interactions with Jordan can be seen to take a general form: raise a challenging question 
requiring thought and action, leave the child to do some mathematics, review and raise a 
new challenge, leave the child to do more mathematics, require a report of mathematical 
thinking.  

Features of Sue’s challenging behaviour with Jordan 
During the exchange with Jordan, Sue: 

• asked Jordan to demonstrate half of a continuous quantity; 
• required him to model the problem; 
• had him explain his solution; 
• expected that he justify that solution; 
• asked him to generalise the concept of half of a discrete quantity; 
• stimulated him to consider the “whole”; 
• requested that he calculate the sum of two equal sets; 
• expected the transfer his previous experience and knowledge of skip counting 

on a calculator to the current problem; 
• prompted him to link his skip counting by 9 to “groups of 9” i.e. connect 

repeated addition to emerging multiplicative thinking; 
• asked him to write and read 2-digit numbers; 
• challenged him to search for pattern in number – the nines sequence; and 
• expected him to describe what he did and what he found to other children.

Sue’s whiteboard recording 
of Jordan’s description of 
counting by nines on a 
calculator. 
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Figure 4.  Timeline of Sue’s interactions with Jordan during the lesson. 
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25:21Clarification and 
restatement of the problem by 
Sue to focus Jordan. 

28:34 Checked progress and 
asked for explanation of “half”. 

0:13 Introduction Jordan asked to halve a 
piece of string. 

01:07:08 Summary session where Sue asked 
Jordan to say how he solved the problem but 
then encouraged him to share the extension 
problem and his use of the calculator to 
generate a 9’s pattern. (3min 32sec). 
01:10:40 Sue took Jordan’s ideas to 
challenge the class. Option for all to count by 
9’s on a calculator. 

59:09 Notice of intention to have Jordan 
share. 

28:34 Jordan pressed for number equivalence 
as a justification of half. 
29:19 Sue turned attention to the “whole”. 
Connected to skip counting by 9’s 30:59 
(2min 25sec). 

48:12 Sue issued the challenge of finding a 
pattern in the count by nines sequence. 

23:55 Jordan queried as to how he planned to 
use the materials he had chosen. 

20:50 Jordan called to work to the floor in a 
small group with Sue. He elected to choose 
alternative manipulatives to solve the problem. 

41:00 Sue admired and checked the counting 
by 9’s 

44:36 Intense exchange about groups of 9 
and emphasis on recording ideas in symbols 
on paper. (3min 36sec). 
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In conclusion 
The exchanges with Jordan illustrate the interlinked mathematical conversations teachers 
have with young children during mathematics lessons. While Sue’s particular style of 
interaction may be unique, each of the teachers in the study (Cheeseman, 2009) conducted 
strings of interlinked interactions with their children. As can be seen from the features of 
the conversations with Jordan, it is during such exchanges that children are called on to 
demonstrate, model, explain, calculate, justify, generalise, transfer, connect, and describe 
their mathematical thinking. It is clear that such opportunities to challenge children to think 
mathematically are an important component of the practice of highly effective teachers of 
mathematics with young children. 
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